
JOSS Documentation

Open Journals

Jul 25, 2023

Author and Reviewer Guides

1 About this site 3

2 Submitting a paper to JOSS 5

3 Sponsors and affiliates 7
3.1 Submitting a paper to JOSS . 7

3.1.1 Submission requirements . 7
3.1.2 Typical paper submission flow . 8
3.1.3 What should my paper contain? . 8
3.1.4 Example paper and bibliography . 9
3.1.5 Submitting your paper . 12
3.1.6 No submission fees . 12
3.1.7 Preprint Policy . 12
3.1.8 Authorship . 12
3.1.9 Submissions using proprietary languages/dev environments 12
3.1.10 The review process . 12

3.2 Reviewing for JOSS . 13
3.2.1 Guiding principles . 13
3.2.2 JOSS Conflict of Interest Policy . 13

3.3 Review criteria . 14
3.3.1 The JOSS paper . 14
3.3.2 Review items . 14

3.3.2.1 Software license . 14
3.3.2.2 Documentation . 15

3.3.2.2.1 A statement of need . 15
3.3.2.2.2 Installation instructions . 15
3.3.2.2.3 Example usage . 15
3.3.2.2.4 API documentation . 15
3.3.2.2.5 Community guidelines . 15

3.3.2.3 Functionality . 15
3.3.2.4 Tests . 16

3.3.3 Other considerations . 16
3.3.3.1 Authorship . 16
3.3.3.2 An important note about ‘novel’ software and citations of relevant work 16
3.3.3.3 What happens if the software I’m reviewing doesn’t meet the JOSS criteria? 16
3.3.3.4 What about submissions that rely upon proprietary languages/development environ-

ments? . 16

i

3.4 Review checklist . 16
3.4.1 Conflict of interest . 17
3.4.2 Code of Conduct . 17
3.4.3 General checks . 17
3.4.4 Functionality . 17
3.4.5 Documentation . 17
3.4.6 Software paper . 18

3.5 Editorial Guide . 18
3.5.1 Pre-review . 18

3.5.1.1 How papers are assigned to editors . 18
3.5.1.2 Finding reviewers . 19
3.5.1.3 Starting the review . 19

3.5.2 Review . 19
3.5.3 After acceptance . 19
3.5.4 Processing of rOpenSci-reviewed and accepted submissions 20
3.5.5 Sample letter to invite reviewers . 20
3.5.6 Overview of editorial process . 21
3.5.7 Visualization of editorial flow . 23
3.5.8 Expectations on JOSS editors . 23

3.5.8.1 Responding to editorial assignments . 23
3.5.8.2 Continued attention to assigned submissions . 24

3.5.9 Out of office . 24
3.6 Interacting with EditorialBot . 24

3.6.1 Author and reviewers commands . 24
3.6.1.1 Compiling papers . 24

3.6.1.1.1 Compiling papers from a specific branch 25
3.6.1.1.2 Compiling preprint files . 25

3.6.1.2 Finding reviewers . 25
3.6.2 Reviewers checklist command . 25
3.6.3 Editorial commands . 25

3.6.3.1 Assigning an editor . 26
3.6.3.2 Inviting an editor . 26
3.6.3.3 Adding and removing reviewers . 26
3.6.3.4 Starting the review . 26
3.6.3.5 Reminding reviewers and authors . 26
3.6.3.6 Setting the software archive . 27
3.6.3.7 Changing the software version . 27
3.6.3.8 Changing the git branch . 27
3.6.3.9 Changing the repository . 27
3.6.3.10 Check references . 27
3.6.3.11 Repository checks . 27
3.6.3.12 Post-review checklist . 28
3.6.3.13 Flag a paper with query-scope . 28
3.6.3.14 Recommending a paper for acceptance . 28

3.6.4 EiC-only commands . 28
3.6.4.1 Accepting a paper . 28
3.6.4.2 Rejecting a paper . 29
3.6.4.3 Withdrawing a paper . 29

3.6.5 The complete list of available commands . 29
3.7 Installing the JOSS application . 30

ii

JOSS Documentation

The Journal of Open Source Software (JOSS) is a developer friendly journal for research software packages.

JOSS is an academic journal (ISSN 2475-9066) with a formal peer-review process that is designed to improve the
quality of the software submitted. Upon acceptance into JOSS, we mint a CrossRef DOI for your paper and we list it
on the JOSS website.

Author and Reviewer Guides 1

http://joss.theoj.org/
http://joss.theoj.org/

JOSS Documentation

2 Author and Reviewer Guides

CHAPTER 1

About this site

This site contains documentation for authors interested in submitting to JOSS, reviewers who have generously volun-
teered their time to review submissions, and editors who manage the JOSS editorial process.

If you’re interested in learning more about JOSS, you might want to read:

• Our announcement blog post describing some of the motivations for starting a new journal

• The paper in Computing in Science and Engineering introducing JOSS

• The paper in PeerJ CS describing the first year of JOSS

• The about page on the main JOSS site

3

http://www.arfon.org/announcing-the-journal-of-open-source-software
https://doi.org/10.1109/MCSE.2018.03221930
https://doi.org/10.7717/peerj-cs.147
http://joss.theoj.org/about

JOSS Documentation

4 Chapter 1. About this site

CHAPTER 2

Submitting a paper to JOSS

If you’d like to submit a paper to JOSS, please read the author submission guidelines in the Submitting a paper to
JOSS section.

5

JOSS Documentation

6 Chapter 2. Submitting a paper to JOSS

CHAPTER 3

Sponsors and affiliates

JOSS is a proud affiliate of the Open Source Initiative. As such, we are committed to public support for open source
software and the role OSI plays therein. In addition, Open Journals (the parent entity behind JOSS) is a NumFOCUS-
sponsored project.

3.1 Submitting a paper to JOSS

If you’ve already developed a fully featured research code, released it under an OSI-approved license, and written
good documentation and tests, then we expect that it should take perhaps an hour or two to prepare and submit your
paper to JOSS. But please read these instructions carefully for a streamlined submission.

3.1.1 Submission requirements

• The software should be open source as per the OSI definition.

• The software should have an obvious research application.

• You should be a major contributor to the software you are submitting.

7

https://opensource.org/
https://www.numfocus.org/project/open-journals
https://www.numfocus.org/project/open-journals
https://opensource.org/licenses
https://opensource.org/osd

JOSS Documentation

• The software should be a significant contribution to the available open source software that either enables some
new research challenges to be addressed or makes addressing research challenges significantly better (e.g., faster,
easier, simpler).

• The software should be feature-complete (no half-baked solutions) and designed for maintainable extension (not
one-off modifications). Minor ‘utility’ packages, including ‘thin’ API clients, are not acceptable.

• Your paper (paper.md and BibTeX files, plus any figures) must be hosted in a Git-based repository, ideally
together with your software.

In addition, the software associated with your submission must:

• Be stored in a repository that can be cloned without registration.

• Be stored in a repository that is browsable online without registration.

• Have an issue tracker that is readable without registration.

• Permit individuals to create issues/file tickets against your repository.

JOSS publishes articles about research software. This definition includes software that: solves complex modeling
problems in a scientific context (physics, mathematics, biology, medicine, social science, neuroscience, engineering);
supports the functioning of research instruments or the execution of research experiments; extracts knowledge from
large data sets; offers a mathematical library, or similar.

3.1.2 Typical paper submission flow

Before you submit, you should:

• Make your software available in an open repository (GitHub, Bitbucket, etc.) and include an OSI approved open
source license.

• Make sure that the software complies with the JOSS review criteria. In particular, your software should be
full-featured, well-documented, and contain procedures (such as automated tests) for checking correctness.

• Write a short paper in Markdown format using paper.md as file name, including a title, summary, author
names, affiliations, and key references. See our example paper to follow the correct format.

• (Optional) create a metadata file describing your software and include it in your repository. We provide a script
that automates the generation of this metadata.

3.1.3 What should my paper contain?

Important: Begin your paper with a summary of the high-level functionality of your software for a non-specialist
reader. Avoid jargon in this section.

JOSS welcomes submissions from broadly diverse research areas. For this reason, we require that authors include in
the paper some sentences that explain the software functionality and domain of use to a non-specialist reader. We also
require that authors explain the research applications of the software. The paper should be between 250-1000 words.

Your paper should include:

• A list of the authors of the software and their affiliations, using the correct format (see the example below).

• A summary describing the high-level functionality and purpose of the software for a diverse, non-specialist
audience.

• A clear Statement of Need that illustrates the research purpose of the software.

8 Chapter 3. Sponsors and affiliates

https://opensource.org/licenses
https://opensource.org/licenses
review_criteria.html
https://gist.github.com/arfon/478b2ed49e11f984d6fb

JOSS Documentation

• A list of key references, including to other software addressing related needs.

• Mention (if applicable) of any past or ongoing research projects using the software and recent scholarly publi-
cations enabled by it.

• Acknowledgement of any financial support.

As this short list shows, JOSS papers are only expected to contain a limited set of metadata (see example below), a
Statement of Need, Summary, Acknowledgements, and References sections. You can look at an example accepted
paper. Given this format, a “full length” paper is not permitted, and software documentation such as API (Applica-
tion Programming Interface) functionality should not be in the paper and instead should be outlined in the software
documentation.

Important: Your paper will be reviewed by two or more reviewers in a public GitHub issue. Take a look at the review
checklist and review criteria to better understand how your submission will be reviewed.

3.1.4 Example paper and bibliography

This example paper.md is adapted from Gala: A Python package for galactic dynamics by Adrian M. Price-Whelan
http://doi.org/10.21105/joss.00388:

title: 'Gala: A Python package for galactic dynamics'
tags:

- Python
- astronomy
- dynamics
- galactic dynamics
- milky way

authors:
- name: Adrian M. Price-Whelan
orcid: 0000-0003-0872-7098
affiliation: "1, 2" # (Multiple affiliations must be quoted)

- name: Author Without ORCID
affiliation: 2

affiliations:
- name: Lyman Spitzer, Jr. Fellow, Princeton University
index: 1

- name: Institution 2
index: 2

date: 13 August 2017
bibliography: paper.bib

Optional fields if submitting to a AAS journal too, see this blog post:
https://blog.joss.theoj.org/2018/12/a-new-collaboration-with-aas-publishing
aas-doi: 10.3847/xxxxx <- update this with the DOI from AAS once you know it.
aas-journal: Astrophysical Journal <- The name of the AAS journal.

Summary

The forces on stars, galaxies, and dark matter under external gravitational
fields lead to the dynamical evolution of structures in the universe. The orbits
of these bodies are therefore key to understanding the formation, history, and
future state of galaxies. The field of "galactic dynamics," which aims to model

(continues on next page)

3.1. Submitting a paper to JOSS 9

http://bit.ly/2x22gxT
http://bit.ly/2x22gxT
review_checklist.html
review_checklist.html
review_criteria.html
http://doi.org/10.21105/joss.00388

JOSS Documentation

(continued from previous page)

the gravitating components of galaxies to study their structure and evolution,
is now well-established, commonly taught, and frequently used in astronomy.
Aside from toy problems and demonstrations, the majority of problems require
efficient numerical tools, many of which require the same base code (e.g., for
performing numerical orbit integration).

``Gala`` is an Astropy-affiliated Python package for galactic dynamics. Python
enables wrapping low-level languages (e.g., C) for speed without losing
flexibility or ease-of-use in the user-interface. The API for ``Gala`` was
designed to provide a class-based and user-friendly interface to fast (C or
Cython-optimized) implementations of common operations such as gravitational
potential and force evaluation, orbit integration, dynamical transformations,
and chaos indicators for nonlinear dynamics. ``Gala`` also relies heavily on and
interfaces well with the implementations of physical units and astronomical
coordinate systems in the ``Astropy`` package [@astropy] (``astropy.units`` and
``astropy.coordinates``).

``Gala`` was designed to be used by both astronomical researchers and by
students in courses on gravitational dynamics or astronomy. It has already been
used in a number of scientific publications [@Pearson:2017] and has also been
used in graduate courses on Galactic dynamics to, e.g., provide interactive
visualizations of textbook material [@Binney:2008]. The combination of speed,
design, and support for Astropy functionality in ``Gala`` will enable exciting
scientific explorations of forthcoming data releases from the *Gaia* mission
[@gaia] by students and experts alike.

Mathematics

Single dollars ($) are required for inline mathematics e.g. $f(x) = e^{\pi/x}$

Double dollars make self-standing equations:

$$\Theta(x) = \left\{\begin{array}{l}
0\textrm{ if } x < 0\cr
1\textrm{ else}
\end{array}\right.$$

Citations

Citations to entries in paper.bib should be in
[rMarkdown](http://rmarkdown.rstudio.com/authoring_bibliographies_and_citations.html)
format.

For a quick reference, the following citation commands can be used:
- `@author:2001` -> "Author et al. (2001)"
- `[@author:2001]` -> "(Author et al., 2001)"
- `[@author1:2001; @author2:2001]` -> "(Author1 et al., 2001; Author2 et al., 2002)"

Figures

Figures can be included like this: ![Example figure.](figure.png)

Acknowledgements

We acknowledge contributions from Brigitta Sipocz, Syrtis Major, and Semyeong
Oh, and support from Kathryn Johnston during the genesis of this project.

(continues on next page)

10 Chapter 3. Sponsors and affiliates

JOSS Documentation

(continued from previous page)

References

Example paper.bib file:

@article{Pearson:2017,
Adsnote = {Provided by the SAO/NASA Astrophysics Data System},
Adsurl = {http://adsabs.harvard.edu/abs/2017arXiv170304627P},
Archiveprefix = {arXiv},
Author = {{Pearson}, S. and {Price-Whelan}, A.~M. and {Johnston}, K.~V.},
Eprint = {1703.04627},
Journal = {ArXiv e-prints},
Keywords = {Astrophysics - Astrophysics of Galaxies},
Month = mar,
Title = {{Gaps in Globular Cluster Streams: Pal 5 and the Galactic Bar}},
Year = 2017

}

@book{Binney:2008,
Adsnote = {Provided by the SAO/NASA Astrophysics Data System},
Adsurl = {http://adsabs.harvard.edu/abs/2008gady.book.....B},
Author = {{Binney}, J. and {Tremaine}, S.},
Booktitle = {Galactic Dynamics: Second Edition, by James Binney and Scott

→˓Tremaine.~ISBN 978-0-691-13026-2 (HB).~Published by Princeton University Press,
→˓Princeton, NJ USA, 2008.},

Publisher = {Princeton University Press},
Title = {{Galactic Dynamics: Second Edition}},
Year = 2008

}

@article{gaia,
author = {{Gaia Collaboration}},
title = "{The Gaia mission}",
journal = {\aap},
archivePrefix = "arXiv",
eprint = {1609.04153},
primaryClass = "astro-ph.IM",
keywords = {space vehicles: instruments, Galaxy: structure, astrometry,

→˓parallaxes, proper motions, telescopes},
year = 2016,
month = nov,
volume = 595,
doi = {10.1051/0004-6361/201629272},
adsurl = {http://adsabs.harvard.edu/abs/2016A%26A...595A...1G},

}

@article{astropy,
author = {{Astropy Collaboration}},
title = "{Astropy: A community Python package for astronomy}",
journal = {\aap},
archivePrefix = "arXiv",
eprint = {1307.6212},
primaryClass = "astro-ph.IM",
keywords = {methods: data analysis, methods: miscellaneous, virtual observatory

→˓tools},
year = 2013,
month = oct,

(continues on next page)

3.1. Submitting a paper to JOSS 11

JOSS Documentation

(continued from previous page)

volume = 558,
doi = {10.1051/0004-6361/201322068},
adsurl = {http://adsabs.harvard.edu/abs/2013A%26A...558A..33A}

}

Note that the paper ends with a References heading, and the references are built automatically from the content in the
.bib file. You should enter in-text citations in the paper body following correct Markdown citation syntax.

3.1.5 Submitting your paper

Submission is as simple as:

• Filling in the short submission form

• Waiting for the managing editor to start a pre-review issue over in the JOSS reviews repository:
https://github.com/openjournals/joss-reviews

3.1.6 No submission fees

There are no fees for submitting or publishing in JOSS. You can read more about our cost and sustainability model.

3.1.7 Preprint Policy

Authors are welcome to submit their papers to a preprint server (arXiv, bioRxiv, SocArXiv, PsyArXiv etc.) at any
point during the submission and review process.

Submission to a preprint server is not considered a previous publication.

3.1.8 Authorship

Purely financial (such as being named on an award) and organizational (such as general supervision of a research
group) contributions are not considered sufficient for co-authorship of JOSS submissions, but active project direction
and other forms of non-code contributions are. The authors themselves assume responsibility for deciding who should
be credited with co-authorship, and co-authors must always agree to be listed. In addition, co-authors agree to be
accountable for all aspects of the work, and to notify JOSS if any retraction or correction of mistakes are needed after
publication.

3.1.9 Submissions using proprietary languages/dev environments

We strongly prefer software that doesn’t rely upon proprietary (paid for) development environments/programming
languages. However, provided your submission meets our requirements (including having a valid open source license)
then we will consider your submission for review. Should your submission be accepted for review, we may ask you,
the submitting author, to help us find reviewers who already have the required development environment installed.

3.1.10 The review process

After submission:

• An Associate Editor-in-Chief will carry out an initial check of your submission, and proceed to assign a handling
editor.

12 Chapter 3. Sponsors and affiliates

https://rmarkdown.rstudio.com/authoring_bibliographies_and_citations.html#citation_syntax
http://joss.theoj.org/papers/new
http://joss.theoj.org/about#costs
https://arxiv.org/
https://www.biorxiv.org/
https://socopen.org/
https://psyarxiv.com/

JOSS Documentation

• The handling editor will assign two or more JOSS reviewers, and the review will be carried out in the JOSS
reviews repository.

• Authors will respond to reviewer-raised issues (if any are raised) on the submission repository’s issue tracker.
Reviewer and editor contributions, like any other contributions, should be acknowledged in the repository.

• Upon successful completion of the review, authors will make a tagged release of the software, and deposit a
copy of the repository with a data-archiving service such as Zenodo or figshare, get a DOI for the archive, and
update the review issue thread with the version number and DOI.

• After we assign a DOI for your accepted JOSS paper, its metadata is deposited with CrossRef and listed on the
JOSS website.

• The review issue will be closed, and an automatic tweet from @JOSS_TheOJ will announce it!

If you want to learn more details about the review process, take a look at the reviewer guidelines.

3.2 Reviewing for JOSS

Firstly, thank you so much for agreeing to review for the Journal of Open Source Software (JOSS), we’re delighted to
have your help. This document is designed to outline our editorial guidelines and help you understand our requirements
for accepting a submission into the JOSS. Our review process is based on a tried-and-tested approach of the rOpenSci
collaboration.

3.2.1 Guiding principles

We like to think of JOSS as a ‘developer friendly’ journal. That is, if the submitting authors have followed best
practices (have documentation, tests, continuous integration, and a license) then their review should be rapid.

For those submissions that don’t quite meet the bar, please try to give clear feedback on how authors could improve
their submission. A key goal of JOSS is to raise the quality of research software generally and you (the experienced
reviewer) are well placed to give this feedback.

A JOSS review involves checking submissions against a checklist of essential software features and details in the
submitted paper. This should be objective, not subjective; it should be based on the materials in the submission as
perceived without distortion by personal feelings, prejudices, or interpretations.

We encourage reviewers to file issues against the submitted repository’s issue tracker. When you have completed
your review, please leave a comment in the review issue saying so.

You can include in your review links to any new issues that you the reviewer believe to be impeding the acceptance of
the repository. (Similarly, if the submitted repository is a GitHub repository, mentioning the review issue URL in the
submitted repository’s issue tracker will create a mention in the review issue’s history.)

3.2.2 JOSS Conflict of Interest Policy

The definition of a conflict of Interest in peer review is a circumstance that makes you “unable to make an impartial
scientific judgment or evaluation.” (PNAS Conflict of Interest Policy). JOSS is concerned with avoiding any actual
conflicts of interest, and being sufficiently transparent that we avoid the appearance of conflicts of interest as well.

As a reviewer, COIs are your present or previous association with any authors of a submission: recent (past four years)
collaborators in funded research or work that is published; and lifetime for the family members, business partners,
and thesis student/advisor or mentor. In addition, your recent (past year) association with the same organization of a
submitter is a COI, for example, being employed at the same institution.

3.2. Reviewing for JOSS 13

https://github.com/openjournals/joss-reviews
https://github.com/openjournals/joss-reviews
https://zenodo.org/
https://figshare.com/
https://twitter.com/JOSS_TheOJ
reviewer_guidelines.html
http://ropensci.org/blog/2016/03/28/software-review
http://ropensci.org/blog/2016/03/28/software-review
http://www.pnas.org/site/authors/coi.xhtml

JOSS Documentation

If you have a conflict of interest with a submission, you should disclose the specific reason to the submissions’ editor.
This may lead to you not being able to review the submission, but some conflicts may be recorded and then waived, and
if you think you are able to make an impartial assessment of the work, you should request that the conflict be waived.
For example, if you and a submitter were two of 2000 authors of a high energy physics paper but did not actually
collaborate. Or if you and a submitter worked together 6 years ago, but due to delays in the publishing industry, a
paper from that collaboration with both of you as authors was published 2 year ago. Or if you and a submitter are both
employed by the same very large organization but in different units without any knowledge of each other.

Declaring actual, perceived, and potential conflicts of interest is required under professional ethics. If in doubt: ask
the editors.

3.3 Review criteria

3.3.1 The JOSS paper

As outlined in the submission guidelines provided to authors, the JOSS paper (the compiled PDF associated with this
submission) should only include:

• A list of the authors of the software

• Author affiliations

• A summary describing the high-level functionality and purpose of the software for a diverse, non-specialist
audience

• A clear statement of need that illustrates the purpose of the software

• Mentions (if applicable) of any ongoing research projects using the software or recent scholarly publications
enabled by it

• A list of key references including a link to the software archive

Important: Note the paper should not include software documentation such as API (Application Programming
Interface) functionality, as this should be outlined in the software documentation.

3.3.2 Review items

Important: Note, if you’ve not yet been involved in a JOSS review, you can see an example JOSS review checklist
here.

3.3.2.1 Software license

There should be an OSI approved license included in the repository. Common licenses such as those listed on chooseal-
icense.com are preferred. Note there should be an actual license file present in the repository not just a reference to
the license.

Acceptable: A plain-text LICENSE file with the contents of an OSI approved licenseNot acceptable: A
phrase such as ‘MIT license’ in a README file

14 Chapter 3. Sponsors and affiliates

submitting.html#what-should-my-paper-contain
review_checklist.html
https://opensource.org/licenses/alphabetical
https://choosealicense.com
https://choosealicense.com

JOSS Documentation

3.3.2.2 Documentation

There should be sufficient documentation for you, the reviewer to understand the core functionality of the software
under review. A high-level overview of this documentation should be included in a README file (or equivalent). There
should be:

3.3.2.2.1 A statement of need

The authors should clearly state what problems the software is designed to solve and who the target audience is.

3.3.2.2.2 Installation instructions

There should be a clearly-stated list of dependencies. Ideally these should be handled with an automated package
management solution.

Good: A package management file such as a Gemfile or package.json or equivalent OK: A list of depen-
dencies to install Bad (not acceptable): Reliance on other software not listed by the authors

3.3.2.2.3 Example usage

The authors should include examples of how to use the software (ideally to solve real-world analysis problems).

3.3.2.2.4 API documentation

Reviewers should check that the software API is documented to a suitable level.

Good: All functions/methods are documented including example inputs and outputs OK: Core API func-
tionality is documented Bad (not acceptable): API is undocumented

Note: The decision on API documentation is left largely to the discretion of the reviewer and their experience of
evaluating the software.

3.3.2.2.5 Community guidelines

There should be clear guidelines for third-parties wishing to:

• Contribute to the software

• Report issues or problems with the software

• Seek support

3.3.2.3 Functionality

Reviewers are expected to install the software they are reviewing and to verify the core functionality of the software.

3.3. Review criteria 15

JOSS Documentation

3.3.2.4 Tests

Authors are strongly encouraged to include an automated test suite covering the core functionality of their software.

Good: An automated test suite hooked up to an external service such as Travis-CI or similar OK: Docu-
mented manual steps that can be followed to objectively check the expected functionality of the software
(e.g., a sample input file to assert behavior) Bad (not acceptable): No way for you the reviewer to objec-
tively assess whether the software works

3.3.3 Other considerations

3.3.3.1 Authorship

As part of the review process, you are asked to check whether the submitting author has made a ‘substantial contribu-
tion’ to the submitted software (as determined by the commit history) and to check that ‘the full list of paper authors
seems appropriate and complete?’

As discussed in the submission guidelines for authors, authorship is a complex topic with different practices in different
communities. Ultimately, the authors themselves are responsible for deciding which contributions are sufficient for
co-authorship, although JOSS policy is that purely financial contributions are not considered sufficient. Your job as a
reviewer is to check that the list of authors appears reasonable, and if it’s not obviously complete/correct, to raise this
as a question during the review.

3.3.3.2 An important note about ‘novel’ software and citations of relevant work

Submissions that implement solutions already solved in other software packages are accepted into JOSS provided that
they meet the criteria listed above and cite prior similar work. Reviewers should point out relevant published work
which is not yet cited.

3.3.3.3 What happens if the software I’m reviewing doesn’t meet the JOSS criteria?

We ask that reviewers grade submissions in one of three categories: 1) Accept 2) Minor Revisions 3) Major Revisions.
Unlike some journals we do not reject outright submissions requiring major revisions - we’re more than happy to give
the author as long as they need to make these modifications/improvements.

3.3.3.4 What about submissions that rely upon proprietary languages/development environments?

As outlined in our author guidelines, submissions that rely upon a proprietary/closed source language or development
environment are acceptable provided that they meet the other submission requirements and that you, the reviewer, are
able to install the software & verify the functionality of the submission as required by our reviewer guidelines.

If an open source or free variant of the programming language exists, feel free to encourage the submitting author to
consider making their software compatible with the open source/free variant.

3.4 Review checklist

JOSS reviews are checklist-driven. That is, there is a checklist for each JOSS reviewer to work through when com-
pleting their review. A JOSS review is generally considered incomplete until the reviewer has checked off all of their
checkboxes.

Below is an example of the review checklist for the Yellowbrick JOSS submission.

16 Chapter 3. Sponsors and affiliates

submitting.html#authorship
https://github.com/openjournals/joss-reviews/issues/1075

JOSS Documentation

Important: Note this section of our documentation only describes the JOSS review checklist. Authors and reviewers
should consult the review criteria to better understand how these checklist items should be interpreted.

3.4.1 Conflict of interest

• As the reviewer I confirm that I have read the JOSS conflict of interest policy and that there are no conflicts of
interest for me to review this work.

3.4.2 Code of Conduct

• I confirm that I read and will adhere to the JOSS code of conduct.

3.4.3 General checks

• Repository: Is the source code for this software available at the repository url?

• License: Does the repository contain a plain-text LICENSE file with the contents of an OSI approved software
license?

• Version: Does the release version given match the GitHub release (v0.8)?

• Authorship: Has the submitting author made major contributions to the software? Does the full list of paper
authors seem appropriate and complete?

3.4.4 Functionality

• Installation: Does installation proceed as outlined in the documentation?

• Functionality: Have the functional claims of the software been confirmed?

• Performance: If there are any performance claims of the software, have they been confirmed? (If there are no
claims, please check off this item.)

3.4.5 Documentation

• A statement of need: Do the authors clearly state what problems the software is designed to solve and who the
target audience is?

• Installation instructions: Is there a clearly-stated list of dependencies? Ideally these should be handled with
an automated package management solution.

• Example usage: Do the authors include examples of how to use the software (ideally to solve real-world
analysis problems).

• Functionality documentation: Is the core functionality of the software documented to a satisfactory level (e.g.,
API method documentation)?

• Automated tests: Are there automated tests or manual steps described so that the function of the software can
be verified?

• Community guidelines: Are there clear guidelines for third parties wishing to 1) Contribute to the software 2)
Report issues or problems with the software 3) Seek support

3.4. Review checklist 17

review_criteria.html
reviewer_guidelines.html#joss-conflict-of-interest-policy
https://joss.theoj.org/about#code_of_conduct
https://opensource.org/licenses/alphabetical

JOSS Documentation

3.4.6 Software paper

• Authors: Does the paper.md file include a list of authors with their affiliations?

• A statement of need: Do the authors clearly state what problems the software is designed to solve and who the
target audience is?

• References: Do all archival references that should have a DOI list one (e.g., papers, datasets, software)?

3.5 Editorial Guide

The Journal of Open Source Software (JOSS) conducts all peer review and editorial processes in the open, on the
GitHub issue tracker.

JOSS editors manage the review workflow with the help of our bot, @editorialbot. The bot is summoned with
commands typed directly on the GitHub review issues. For a list of commands, type: @editorialbot commands.

Note: To learn more about @editorialbot’s functionalities, take a look at our dedicated guide.

3.5.1 Pre-review

Once a submission comes in, it will be in the queue for a quick check by the Editor-in-chief (EiC). From there, it
moves to a PRE-REVIEW issue, where the EiC will assign a handling editor, and the author can suggest reviewers.
Initial direction to the authors for improving the paper can already happen here, especially if the paper lacks some
requested sections.

Important: If the paper is out-of-scope for JOSS, editors assess this and notify the author in the PRE-REVIEW issue.

The EiC assigns an editor (or a volunteering editor self-assigns) with the command @editorialbot assign
@username as editor in a comment.

Note: If a paper is submitted without a recommended editor, it will show up in the weekly digest email under the
category ‘Papers currently without an editor.’ Please review this weekly email and volunteer to edit papers that look to
be in your domain. If you choose to be an editor in the issue thread type the command @editorialbot assign
@yourhandle as editor

3.5.1.1 How papers are assigned to editors

By default, unless an editor volunteers, the Associated Editor-in-chief (AEiC) on duty will attempt to assign an incom-
ing paper to the most suitable handling editor. While AEiCs will make every effort to match a submission with the
most appropriate editor, there are a number of situations where an AEiC may assign a paper to an editor that doesn’t
fit entirely within the editor’s research domains:

• If there’s no obvious fit to any of the JOSS editors

• If the most suitable editor is already handling a large number of papers

• If the chosen editor has a lighter editorial load than other editors

18 Chapter 3. Sponsors and affiliates

editorial_bot.html

JOSS Documentation

In most cases, an AEiC will ask one or more editors to edit a submission (e.g. @editor1, @editor 2 -
would one of you be willing to edit this submission for JOSS). If the editor doesn’t re-
spond within ~3 working days, the AEiC may assign the paper to the editor regardless.

3.5.1.2 Finding reviewers

At this point, the handling editor’s job is to identify reviewers who have sufficient expertise in the field of software
and in the field of the submission. JOSS papers have to have a minimum of two reviewers per submission, except for
papers that have previously been peer-reviewed via rOpenSci. In some cases, the editor also might want to formally
add themself as one of the reviewers. If the editor feels particularly unsure of the submission, a third (or fourth)
reviewer can be recruited.

To recruit reviewers, the handling editor can mention them in the PRE-REVIEW issue with their GitHub handle, ping
them on Twitter, or email them. After expressing initial interest, candidate reviewers may need a longer explanation
via email. See sample reviewer invitation email, below.

Once a reviewer accepts, the handling editor runs the command @editorialbot assign @username
as reviewer in the PRE-REVIEW issue. Add more reviewers with the command @editorialbot add
@username as reviewer.

Note: The assign command clobbers all reviewer assignments. If you want to add an additional reviewer use the
add command.

3.5.1.3 Starting the review

Next, run the command @editorialbot start review. If you haven’t assigned an editor and reviewer, this
command will fail and @editorialbot will tell you this. This will open the REVIEW issue, with prepared review
checklists for each reviewer, and instructions. The editor should close the PRE-REVIEW issue, at this point, and move
the conversation to the separate REVIEW issue.

3.5.2 Review

The REVIEW issue contains some instructions, and reviewer checklists. The reviewer(s) should check off items of the
checklist one-by-one, until done. In the meantime, reviewers can engage the authors freely in a conversation aimed at
improving the paper.

If a reviewer recants their commitment or is unresponsive, editors can remove them with the command
@editorialbot remove @username as reviewer. You can also add new reviewers in the REVIEW issue,
but in this case, you need to manually add a review checklist for them by editing the issue body.

Comments in the REVIEW issue should be kept brief, as much as possible, with more lengthy suggestions or requests
posted as separate issues, directly in the submission repository. A link-back to those issues in the REVIEW is helpful.

When the reviewers are satisfied with the improvements, we ask that they confirm their recommendation to accept the
submission.

3.5.3 After acceptance

When a submission is accepted, we ask that the authors create an archive (on Zenodo, figshare, or other) and post the
archive DOI in the REVIEW issue. The editor should run the command @editorialbot set <archive doi>
as archive, and ping the EiC for final processing.

3.5. Editorial Guide 19

https://zenodo.org/
https://figshare.com/

JOSS Documentation

Steps:

• Get a new proof with the @editorialbot generate pdf command.

• Download the proof, check all references have DOIs, follow the links and check the references.

– Editorialbot can help check references with the command @editorialbot check references

• Give the paper a proof-read and ask authors to fix typos.

• Ask the author to make a Zenodo archive, and report the DOI in the review thread.

• Check the Zenodo deposit has the correct metadata (title and author list), and request the author edit it if it
doesn’t match the paper.

• Run @editorialbot set <doi> as archive.

• Run @editorialbot set <v1.x.x> as version if the version was updated.

• Ping the @openjournals/joss-eics team on the review thread letting them know the paper is ready to
be accepted.

At that point, the EiC/AEiC will take over to publish the paper.

It’s also a good idea to ask the authors to check the proof. We’ve had a few papers request a post-publication change
of author list, for example—this requires a manual download/compile/deposit cycle and should be a rare event.

3.5.4 Processing of rOpenSci-reviewed and accepted submissions

If a paper has already been reviewed and accepted by rOpenSci, the streamlined JOSS review process is:

• Assign yourself as editor and reviewer

• Add a comment in the pre-review issue pointing to the rOpenSci review

• Start the review issue

• Add a comment in the review issue pointing to the rOpenSci review

• Compile the paper and check it looks ok

• Tick off all the review checkboxes

• Go to to the source code repo and grab the Zenodo DOI

• Accept the paper

3.5.5 Sample letter to invite reviewers

Dear Dr. Jekyll,

I found you following links from the page of The Super Project and/or on Twitter. This
message is to ask if you can help us out with a submission to JOSS (The Journal of
→˓Open
Source Software), where I’m an editor.

JOSS publishes articles about open source research software. The submission I'd like
→˓you
to review is titled: "great software name here"

and the submission repository is at: https://github.com/< ... >

(continues on next page)

20 Chapter 3. Sponsors and affiliates

JOSS Documentation

(continued from previous page)

JOSS is a free, open-source, community driven and developer-friendly online journal
(no publisher is seeking to raise revenue from the volunteer labor of researchers!).

The review process at JOSS is unique: it is open and author-reviewer-editor
→˓conversations
are encouraged.

JOSS reviews involve downloading and installing the software, and inspecting the
→˓repository
and submitted paper for key elements. See https://joss.readthedocs.io/en/latest/
→˓review_criteria.html

Editors and reviewers post comments on the Review issue, and authors respond to the
→˓comments
and improve their submission until acceptance (or withdrawal, if they feel unable to
satisfy the review).

Would you be able to review this submission for JOSS? If not, can you recommend
someone from your team to help out?

Kind regards,

JOSS Editor.

3.5.6 Overview of editorial process

Step 1: An author submits a paper.

The author can choose to select an preferred editor based on the information available in our biographies. This can be
changed later.

Step 2: If you are selected as an editor you get @-mentioned in the pre-review issue.

This doesn’t mean that you’re the editor, just that you’ve been suggested by the author.

Step 3: Once you are the editor, find the link to the code repository in the pre-review issue

Step 4: The editor looks at the software submitted and checks to see if:

• There’s a general description of the software

• The software is within scope as research software

• It has an OSI-approved license

Step 5: The editor responds to the author saying that things look in line (or not) and will search for reviewer

Step 6: The editor finds >= 2 reviewers

• Use the list of reviewers: type the command @editorialbot list reviewers or look at list of review-
ers in a Google spreadsheet

• If people are in the review list, the editor can @-mention them on the issue to see if they will review: e.g.
@person1 @person2 can you review this submission for JOSS?

• Or solicit reviewers outside the list. Send an email to people describing what JOSS is and asking if they would
be interested in reviewing.

Step 7: Editor tells Editorialbot to assign the reviewer to the paper

• Use @editorialbot add @reviewer as reviewer

3.5. Editorial Guide 21

https://docs.google.com/spreadsheets/d/1PAPRJ63yq9aPC1COLjaQp8mHmEq3rZUzwUYxTulyu78/edit?usp=sharing

JOSS Documentation

• To add a second reviewer you can repeat the same command or use @editorialbot add @reviewer2
to reviewers

Step 8: Create the actual review issue

• Use @editorialbot start review

• An issue is created with the review checklist, one per reviewer, e.g. https://github.com/openjournals/joss-
reviews/issues/717

Step 9: Close the pre-review issue

Step 10: The actual JOSS review

• The reviewer reviews the paper and has a conversation with the author. The editor lurks on this conversation and
comes in if needed for questions (or CoC issues).

• The reviewer potentially asks for changes and the author makes changes. Everyone agrees it’s ready.

Step 11: The editor pings the EiC team to get the paper published

• To get the paper published, ping the @openjournals/joss-eics team on the review thread letting them
know the paper is ready to be accepted.

Step 12: Celebrate publication! Tweet! Thank reviewers! Say thank you on issue.

22 Chapter 3. Sponsors and affiliates

JOSS Documentation

3.5.7 Visualization of editorial flow

Editorial
flow

3.5.8 Expectations on JOSS editors

3.5.8.1 Responding to editorial assignments

As documented above, usually, papers will be assigned to you by one of the AEiCs. We ask that editors do their best
to respond in a timely fashion (~ 3 working days) to invites to edit a new submission.

3.5. Editorial Guide 23

JOSS Documentation

3.5.8.2 Continued attention to assigned submissions

As an editor, part of your role is to ensure that submissions you’re responsible for are progressing smoothly through
the editorial process. This means that once or twice per week we ask that you check your GitHub notifications and/or
your editorial dashboard (e.g. http://joss.theoj.org/dashboard/youreditorname) for updates to the
papers you are handling.

If reviews go stale

Sometimes reviews go quiet, either because a reviewer has failed to complete their review or an author has been slow
to respond to a reviewer’s feedback. As the editor, we need you to prompt the author/or reviewer(s) to revisit the
submission if there has been no response within 7-10 days unless there’s a clear statement in the review thread
that says an action is coming at a slightly later time, perhaps because a reviewer committed to a review by a
certain date, or an author is making changes and says they will be done by a certain date.

Editorialbot has functionality to remind an author or review to return to a review at a certain point in the future. For
example:

@editorialbot remind @reviewer in five days

3.5.9 Out of office

Sometimes we need time away from our editing duties at JOSS. The joss-reviews repository has the OoO bot installed
which means you can mark yourself as out of the office (and unable to respond to reviews) for a period of time e.g.:

Mark yourself as OoO in one of the reviews you’re editing in the joss-reviews repository like this:

/ooo January 18 until February 2

Ooo bot will then respond to any mentions in the joss-reviews repository to let people know you’re away.

Note, if you’re planning on being out of the office for more than two weeks, please let the JOSS editorial team
know.

3.6 Interacting with EditorialBot

The Open Journals’ editorial bot or @editorialbot on GitHub, is our editorial bot that interacts with authors,
reviewers, and editors on JOSS reviews.

@editorialbot can do a bunch of different things. If you want to ask @editorialbot what it can do, simply
type the following in a JOSS review or pre-review issue:

@editorialbot commands

3.6.1 Author and reviewers commands

A subset of the EditorialBot commands are available to authors and reviewers:

3.6.1.1 Compiling papers

When a pre-review or review issue is opened, @editorialbot will try to compile the JOSS paper by looking
for a paper.md file in the repository specified when the paper was submitted.

24 Chapter 3. Sponsors and affiliates

https://joss.readthedocs.io/en/latest/editorial_bot.html
https://github.com/openjournals/joss-reviews
https://github.com/swinton/probot-ooo
https://github.com/openjournals/joss-reviews
https://github.com/openjournals/joss-reviews

JOSS Documentation

If it can’t find the paper.md file it will say as much in the review issue. If it can’t compile the paper (i.e. there’s
some kind of Pandoc error), it will try and report that error back in the thread too.

Note: To compile the papers @editorialbot is running this Docker image.

Anyone can ask @editorialbot to compile the paper again (e.g. after a change has been made). To do this simply
comment on the review thread as follows:

@editorialbot generate pdf

3.6.1.1.1 Compiling papers from a specific branch

By default, EditorialBot will look for papers in the branch set in the body of the issue (or in the default git branch if
none is present). If you want to compile a paper from a specific branch (for instance: my-custom-branch-name),
change that value with:

@editorialbot set my-custom-branch-name as branch

And then compile the paper normally:

@editorialbot generate pdf

3.6.1.1.2 Compiling preprint files

If you need a generic paper file suitable for preprint servers (arXiv-like) you can use the following command that will
generate a LaTeX file:

@editorialbot generate preprint

3.6.1.2 Finding reviewers

Sometimes submitting authors suggest people the think might be appropriate to review their submission. If you want
the link to the current list of JOSS reviewers, type the following in the review thread:

@editorialbot list reviewers

3.6.2 Reviewers checklist command

Once a user is assigned as reviewer and the review has started, the reviewer must type the following to get a review
checklist:

@editorialbot generate my checklist

3.6.3 Editorial commands

Most of @editorialbot’s functionality can only be used by the journal editors.

3.6. Interacting with EditorialBot 25

https://github.com/openjournals/inara

JOSS Documentation

3.6.3.1 Assigning an editor

Editors can either assign themselves or other editors as the editor of a submission as follows:

@editorialbot assign @editorname as editor

3.6.3.2 Inviting an editor

EditorialBot can be used by EiCs to send email invites to registered editors as follows:

@editorialbot invite @editorname as editor

This will send an automated email to the editor with a link to the GitHub pre-review issue.

3.6.3.3 Adding and removing reviewers

Reviewers should be assigned by using the following commands:

Add a GitHub user to the reviewers of this submission
@editorialbot add @username as reviewer
or
@editorialbot add @username to reviewers

Remove a GitHub user from the reviewers of this submission
@editorialbot remove @username from reviewers

3.6.3.4 Starting the review

Once the reviewer(s) and editor have been assigned in the pre-review issue, the editor starts the review with:

@editorialbot start review

Important: If a reviewer recants their commitment or is unresponsive, editors can remove them with the com-
mand @editorialbot remove @username from reviewers. You can then delete that reviewer’s check-
list. You can also add new reviewers in the REVIEW issue with the command @editorialbot add @username
to reviewers.

3.6.3.5 Reminding reviewers and authors

EditorialBot can remind authors and reviewers after a specified amount of time to return to the review issue. Reminders
can only be set by editors, and only for REVIEW issues. For example:

Remind the reviewer in two weeks to return to the review
@editorialbot remind @reviewer in two weeks

Remind the reviewer in five days to return to the review
@editorialbot remind @reviewer in five days

Remind the author in two weeks to return to the review
@editorialbot remind @author in two weeks

26 Chapter 3. Sponsors and affiliates

JOSS Documentation

Note: Most units of times are understood by EditorialBot e.g. hour/hours/day/days/week/weeks.

3.6.3.6 Setting the software archive

When a submission is accepted, we ask that the authors to create an archive (on Zenodo, figshare, or other) and post
the archive DOI in the REVIEW issue. The editor should ask @editorialbot to add the archive to the issue as
follows:

@editorialbot set 10.0000/zenodo.00000 as archive

3.6.3.7 Changing the software version

Sometimes the version of the software changes as a consequence of the review process. To update the version of the
software do the following:

@editorialbot set v1.0.1 as version

3.6.3.8 Changing the git branch

Sometimes the paper-md file is located in a topic branch. In order to have the PDF compiled from that branch it should
be added to the issue. To update the branch value do the following (in the example, the name of the topic branch is
topic-branch-name):

@editorialbot set topic-branch-name as branch

3.6.3.9 Changing the repository

Sometimes authors will move their software repository during the review. To update the value of the repository URL
do the following:

@editorialbot set https://github.com/ORG/REPO as repository

3.6.3.10 Check references

Editors can ask EditorialBot to check if the DOIs in the bib file are valid with the command:

@editorialbot check references

Note: EditorialBot can verify that DOIs resolve, but cannot verify that the DOI associated with a paper is actually
correct. In addition, DOI suggestions from EditorialBot are just that - i.e. they may not be correct.

3.6.3.11 Repository checks

A series of checks can be run on the submitted repository with the command:

3.6. Interacting with EditorialBot 27

https://zenodo.org/
https://figshare.com/

JOSS Documentation

@editorialbot check repository

EditorialBot will report back with an analysis of the source code and list authorship, contributions and file types
information. EditorialBot will also detect the languages used in the repository, will count the number of words in the
paper file and will look for an Open Source License and for a Statement of need section in the paper.

It is possible to run the checks on a specific git branch:

@editorialbot check repository from branch <custom-branch-name>

3.6.3.12 Post-review checklist

Editors can get a checklist to remind all steps to do after the reviewers have finished their reviews and recommended
the paper for acceptance:

@editorialbot create post-review checklist

3.6.3.13 Flag a paper with query-scope

Editors can flag a paper with query-scope with the command:

@editorialbot query scope

3.6.3.14 Recommending a paper for acceptance

JOSS topic editors can recommend a paper for acceptance and ask for the final proofs to be created by EditorialBot
with the following command:

@editorialbot recommend-accept

On issuing this command, EditorialBot will also check the references of the paper for any missing DOIs.

3.6.4 EiC-only commands

Only the JOSS editors-in-chief can accept, reject or withdraw papers.

3.6.4.1 Accepting a paper

If everything looks good with the draft proofs from the @editorialbot recommend acceptance command,
JOSS editors-in-chief can take the additional step of actually accepting the JOSS paper with the following command:

@editorialbot accept

EditorialBot will accept the paper, assign it a DOI, deposit it and publish the paper.

28 Chapter 3. Sponsors and affiliates

JOSS Documentation

3.6.4.2 Rejecting a paper

JOSS editors-in-chief can reject a submission with the following command:

@editorialbot reject

3.6.4.3 Withdrawing a paper

JOSS editors-in-chief can withdraw a submission with the following command:

@editorialbot withdraw

3.6.5 The complete list of available commands

List all available commands
@editorialbot commands

Add to this issue's reviewers list
@editorialbot add @username as reviewer

Remove from this issue's reviewers list
@editorialbot remove @username from reviewers

Get a list of all editors's GitHub handles
@editorialbot list editors

Assign a user as the editor of this submission
@editorialbot assign @username as editor

Remove the editor assigned to this submission
@editorialbot remove editor

Remind an author or reviewer to return to a review after a
certain period of time (supported units days and weeks)
@editorialbot remind @reviewer in 2 weeks

Check the references of the paper for missing DOIs
@editorialbot check references

Perform checks on the repository
@editorialbot check repository

Adds a checklist for the reviewer using this command
@editorialbot generate my checklist

Set a value for version
@editorialbot set v1.0.0 as version

Set a value for archive
@editorialbot set 10.21105/zenodo.12345 as archive

Set a value for branch
@editorialbot set joss-paper as branch

(continues on next page)

3.6. Interacting with EditorialBot 29

JOSS Documentation

(continued from previous page)

Set a value for repository
@editorialbot set https://github.com/org/repo as repository

Reject paper
@editorialbot reject

Withdraw paper
@editorialbot withdraw

Invite an editor to edit a submission (sending them an email)
@editorialbot invite @(.*) as editor

Generates the pdf paper
@editorialbot generate pdf

Generates a LaTeX preprint file
@editorialbot generate preprint

Creates a post-review checklist with editor and authors tasks
@editorialbot create post-review checklist

Recommends the submission for acceptance
@editorialbot recommend-accept

Accept and publish the paper
@editorialbot accept

Flag submission with questionable scope
@editorialbot query scope

Get a link to the complete list of reviewers
@editorialbot list reviewers

Open the review issue
@editorialbot start review

Ping the EiCs for the current track
@editorialbot ping track-eic

3.7 Installing the JOSS application

To be written. . .

For now, please take a look at the JOSS codebase.

30 Chapter 3. Sponsors and affiliates

https://github.com/openjournals/joss

	About this site
	Submitting a paper to JOSS
	Sponsors and affiliates
	Submitting a paper to JOSS
	Submission requirements
	Typical paper submission flow
	What should my paper contain?
	Example paper and bibliography
	Submitting your paper
	No submission fees
	Preprint Policy
	Authorship
	Submissions using proprietary languages/dev environments
	The review process

	Reviewing for JOSS
	Guiding principles
	JOSS Conflict of Interest Policy

	Review criteria
	The JOSS paper
	Review items
	Software license
	Documentation
	A statement of need
	Installation instructions
	Example usage
	API documentation
	Community guidelines

	Functionality
	Tests

	Other considerations
	Authorship
	An important note about ‘novel’ software and citations of relevant work
	What happens if the software I’m reviewing doesn’t meet the JOSS criteria?
	What about submissions that rely upon proprietary languages/development environments?

	Review checklist
	Conflict of interest
	Code of Conduct
	General checks
	Functionality
	Documentation
	Software paper

	Editorial Guide
	Pre-review
	How papers are assigned to editors
	Finding reviewers
	Starting the review

	Review
	After acceptance
	Processing of rOpenSci-reviewed and accepted submissions
	Sample letter to invite reviewers
	Overview of editorial process
	Visualization of editorial flow
	Expectations on JOSS editors
	Responding to editorial assignments
	Continued attention to assigned submissions

	Out of office

	Interacting with EditorialBot
	Author and reviewers commands
	Compiling papers
	Compiling papers from a specific branch
	Compiling preprint files

	Finding reviewers

	Reviewers checklist command
	Editorial commands
	Assigning an editor
	Inviting an editor
	Adding and removing reviewers
	Starting the review
	Reminding reviewers and authors
	Setting the software archive
	Changing the software version
	Changing the git branch
	Changing the repository
	Check references
	Repository checks
	Post-review checklist
	Flag a paper with query-scope
	Recommending a paper for acceptance

	EiC-only commands
	Accepting a paper
	Rejecting a paper
	Withdrawing a paper

	The complete list of available commands

	Installing the JOSS application

